Noise-Induced Increase of Sensitivity in Bacterial Chemotaxis
نویسندگان
چکیده
منابع مشابه
Noise-Induced Increase of Sensitivity in Bacterial Chemotaxis.
Flagellated bacteria, like Escherichia coli, can swim toward beneficial environments by modulating the rotational direction of their flagellar motors through a chemotaxis signal transduction network. The noise of this network, the random fluctuation of the intracellular concentration of the signal protein CheY-P with time, has been identified in studies of single cell behavioral variability, an...
متن کاملReceptor sensitivity in bacterial chemotaxis.
Chemoreceptors in Escherichia coli are coupled to the flagella by a labile phosphorylated intermediate, CheY approximately P. Its activity can be inferred from the rotational bias of flagellar motors, but motor response is stochastic and limited to a narrow physiological range. Here we use fluorescence resonance energy transfer to monitor interactions of CheY approximately P with its phosphatas...
متن کاملSensitivity Analysis of Bacterial Chemotaxis Models
Chemotaxis is the process, by which cells sense changes in their chemical environment and move towards more favorable onditions. This process is controlled by signaling pathways, which are relatively simple, but bear several important features of he ones of higher organisms. Sensitivity analysis of mathematical chemotaxis models of bacteria Escherichia coli and Bacillus ubtilis was carried out ...
متن کاملBacterial chemotaxis
Chemotaxis is the directed motion of an organism toward environmental conditions it deems attractive and/or away from surroundings it finds repellent. Movement of flagellated bacteria such as Escherichia coli can be characterized as a sequence of smooth-swimming runs punctuated by intermittent tumbles. Tumbles last only a fraction of a second, which is sufficient to effectively randomize the di...
متن کاملChemotaxis-Induced Anomalous Tracer Diffusion in Bacterial Suspensions
By developing a molecular dynamics model of bacterial chemotaxis, we present the first investigation of tracer statistics in bacterial suspensions where chemotactic effects are considered. We demonstrate that the non-Gaussian statistics of full-coated tracer arises from the athermal bacterial noise. Moreover, Janus (half-coated) tracer performs a composite random walk combining powerlaw-tail di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2016
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2016.06.013